
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Optimal Project Assignment Using Kuhn’s Algorithm

for Maximum Bipartite Matching

Adril Putra Merin - 13522068

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13522068@std.stei.itb.ac.id

Abstract— This paper explores the application of Kuhn’s

algorithm to solve the project assignment problem. The project

assignment problem aims to optimally allocate a set of people in a

group to a set of projects based on their skills and project

requirements. By modeling the problem as a bipartite graph,

where one set represents people and the other set represents

projects, we can leverage Kuhn’s algorithm to find the maximum

matching that maximizes the overall efficiency of assignments.

This approach ensures that each person is assigned to zero or one

project, and each project receives zero or one person. The

efficiency of the algorithm is demonstrated through various

experiments, showcasing its potential to significantly enhance

project management processes. This also indicates that Kuhn’s

algorithm provides a robust and efficient solution, outperforming

brute force assignment methods.

Keywords—Depth First Search; DFS; Maximum Bipartite

Matching; Project Assignment; Kuhn’s Algorithm; Graph

I. INTRODUCTION

Effective task assignment is one the main challenges in
project management and resource allocation within an
organization. Ensuring that each person is assigned to a project
that matches their skills and capabilities is crucial for achieving
maximum efficiency and optimal outcomes. However, this
process is often complex and requires robust algorithms to
optimize the assignments.

In the context of the task assignment problem, we can model
it as a bipartite graph, where one set represents people, and the
other set represents tasks. Each person and project can be
represented as a vertex and be connected if a person’s skill meets
the project requirement. The objective of maximum bipartite
matching is to find a matching that maximizes the number of
assignments, ensuring that each person is assigned to zero or one
project, and each project receives zero or one person.

One of the most straightforward methods to solve maximum
bipartite matching is by using the brute force algorithm.
However, the following sections of this paper will show that this
method is not the best way to solve this problem because, as the
name suggests, the brute force algorithm does not consider the
heuristics and details of the problem; instead, it tries all possible
answers to get the optimal solution.

Another way to get the optimal project assignment is by
using Kuhn’s algorithm which offers an efficient solution for the
maximum bipartite matching. The subsequent of this paper will
discuss the theoretical background of Kuhn’s algorithm and
show various experiments to demonstrate the efficiency of this
approach.

II. BASIC THEORY

A. Brute Force

The brute force algorithm is one of the simplest and most
straightforward techniques in computer science for solving
problems. As the name suggests, it involves systematically
enumerating all possible candidates for the solution and
checking whether each candidate satisfies the problem’s
requirement without considering the heuristics or details of the
problem.

While brute force algorithm is complete – will always find
the solution if exists – and easy to implement, the computational
costs are proportional to the number of candidate solutions
which tends to grow very quickly as the size of the problem
increases. Thus, this algorithm is not particularly efficient
because it is possible to eliminate many candidate solutions
through clever algorithms.

Brute force algorithm is usually used in a problem where the
size is limited or in a condition where the simplicity of the
implementation is more important than the computational speed.
This algorithm can also be used as baseline method when
benchmarking other algorithms. The general steps of this
algorithm can be defined as follows.

1. Generate All Possible Candidates: List all possible
solutions to the problem. This may involve generating
permutations, combinations, or other relevant
structures.

2. Evaluate Each Candidate: Check each candidate to see
if it meets the problem’s requirements. This often
involves a straightforward comparison or evaluation
function.

3. Select the Best Solution: Out of all candidates that meet
the requirements, select the one that optimizes the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

objective, for example minimum cost, maximum profit,
etc.

 Because of its generality, the brute force algorithm can be
applied to a wide range of problems without many
modifications. For example, Travelling Salesman Problem,
Password Cracking, String Matching, Subset Sum, Bubble Sort,
Selection Sort, etc.

Figure 1. An example of brute force used in bubble sort

B. Graph

Graphs are fundamental data structures used in both
mathematics and computer science to represent relationships
between objects. They consist of vertices, which represent the
objects being modeled, and edges, which represent the
relationship between objects.

Based on edge orientation, a graph can be directed or
undirected. In a directed graph, edges have a direction,
indicating a one-way relationship between vertices. In an
undirected graph, edges have no direction, signifying a mutual
relationship between vertices.

Moreover, a graph can be weighted or unweighted. In a
weighted graph, each edge has a numerical weight or cost
associated with it, representing cost of the relationship between
vertices. Unweighted graphs have no such weights.

Visually, a graph is usually represented as a collection of
dots or circles to denote the vertices, connected by lines or
curves to denote the edges. In their implementations, Graphs can
be represented in various ways, such as adjacency list and
adjacency matrix.

Figure 2. Visual representation of a graph

An adjacency matrix is a 2D array where each cell represents
the presence or absence of an edge between two vertices in

graph. If there is an edge from vertex i to vertex j, the cell (i, j)
contains a non-zero or non-infinity value (usually 1 for an
unweighted graph). If there is no edge, the cell contains a zero
or infinity (in weighted graphs). For weighted graphs, the cell
may contain the weight of the corresponding edges.

An adjacency list is a collection of lists or arrays, where each
vertex in the graph has a list of its adjacent vertices. This
representation is typically more memory-efficient for sparse
graphs since it only stores information about existing edges.

Graphs have plenty of applications such as computer
networking, social networks, transportation systems,
recommendations system, etc.

C. Depth First Search

Depth First Search is an algorithm for traversing or searching
a tree or graph data structure. DFS traverses a graph by starting
at a chosen vertex (the start vertex) and exploring as far as
possible along each branch before backtracking. It prioritizes
exploring the deepest unexplored vertices first. When a dead-
end is reached (namely there are no more unvisited vertices
adjacent to the current vertex), DFS backtracks to the most
recently visited vertex that still has unvisited neighbors and
continues exploring from there. The general steps for this
algorithm can be described as follows.

1. Begin the traversal by selecting a root vertex in the
graph.

2. Visit the root vertex and mark it as visited to avoid
revisiting it during traversal.

3. Visit each neighbor of the current vertex that has not
been visited yet. If a vertex has multiple unvisited
neighbors, choose one and proceed deeper into that
neighbor before visiting other neighbors.

4. If all neighbors of the current vertex have been visited,
backtrack to the most recently visited vertex with
unvisited neighbors and continue the exploration from
there.

5. Repeat steps 3 and 4 until all vertices in the graph have
been visited.

Figure 3. Example of DFS

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

The time complexity of DFS if O(V + E), where V is the
number of vertices and E is the number of edges in the graph.
This is because DFS visits each vertex and edge at most once.

D. Bipartite Graph

A bipartite graph is a type of graph whose vertices can be
divided into two disjoint sets such that no two vertices within the
same set are adjacent to each other. Formally, a graph G = (V, E)
is bipartite if its vertex set V can be partitioned into two sets V1
and V2 such that every edge in E connects a vertex in V1 to a V2.

Figure 3. Visual example of a bipartite graph

To put it simply, a bipartite graph is a graph that can be
colored using only two colors in such a way that no two adjacent
vertices have the same color. This property makes bipartite
graphs particularly interesting and useful in various applications.

E. Maximum Bipartite Matching

Maximum bipartite matching is a fundamental problem in
graph theory and combinatorial optimization that involves
finding the largest possible set of non-intersecting edges in a
bipartite graph.

Given a bipartite graph G = (V, E), with vertex sets V1 and
V2, a matching M is a subset of edges from E such that no two
edges in M share a common endpoint. A maximum bipartite
matching is a matching with the maximum possible number of
edges.

Figure 4. An example of maximum bipartite (source:
https://www.geeksforgeeks.org/maximum-bipartite-matching/)

Before proceeding to the next section, these are some
important definitions of some terms that will used frequently in
following sections.

- Cardinality of a matching: number of edges in a
matching

- Saturated vertex: a vertex that have an adjacent edge
from the matching M, namely which have degree
exactly one in the subgraph formed by M.

- Maximal matching: a matching M of graph G that is
not a subset of any other matching

- Path: a simple path that does not contain any repeated
vertices or edges.

- Alternating path: a path in which the edges alternately
belong or do not belong to a matching M.

- Augmenting path: alternating path whose initial and
final vertices are unsaturated, namely they do not belong
in the matching M.

- Symmetric difference of sets A and B: set of all
elements that belong to either A or B, but not both.
Mathematically, this expression can be written as
follows.

A ⊕ B = (A − B) ∪ (B − A)

F. Berge’s Lemma

Berge’s Lemma originally observed by the Danish
mathematician Julius Petersen in 1891 and later by Hungarian
mathematician Denés Kőnig in 1931. This lemma was formally
proven by the French mathematician Claude Berge in 1957.

This lemma states that a matching M is maximum if and only
if there is no augmenting path relative to the matching M. We
will prove both directions of this bi-implication by using
contradiction.

1. A matching M is maximum ⇒ There is no augmenting
path relative to M.

Assume there is an augmenting path P relative to the
given maximum matching M. This augmenting path P
must be of odd length, containing one more edge not in
M than the number of edges it has that are also in M. We
can construct a new matching M’ by including all edges
in the original matching M except those also in P, and
including the edges in P that are not in M. This new
matching M' is valid because the starting and ending
vertices of P are unsaturated by M and the remaining
vertices are only saturated by the matching P ∩ M. As a
result, the new matching M’ will have one more edge
than M. Thus, contradicting the assumption that M was
maximum. Formally, given an augmenting path P with
respect to some maximum matching M, the matching
M' = P ⊕ M has |M'| = |M| + 1, which is a
contradiction.

2. There is no augmenting path relative to M ⇒ A
matching M is maximum

Let there be a matching M' of greater cardinality than
M. Consider the symmetric difference Q = M ⊕ M’.
The subgraph Q is no longer necessarily a matching.
Each vertex in Q has a maximum degree of 2, meaning
all connected components in Q are one of three types:

- An isolated vertex

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

- A simple path with edges alternating between M and
M'

- a cycle of even length whose edges are alternately from
M to M’.

Since M’ has more edges than M, Q contains more edges
from M’ than M. By the pigeonhole principle, at least one
connected component must be a path with more edges from M’
than M. Any such alternating path will have initial and final
vertices unsaturated by M, forming an augmenting path for M,
which contradicts the initial assumption.

G. Kuhn’s Algorithm

Kuhn’s algorithm is one of the most efficient algorithms to
solve maximum bipartite matching problem. This algorithm is a
direct application of Berge’s lemma. First, we start with an
empty matching. The algorithm then repeatedly searches for an
augmenting path. Whenever it finds one, it updates the matching
by alternating along the path. This process is repeated until no
more augmenting paths can be found, at which point the current
matching is considered maximum.

For convenience, let’s assume that the input graph is already
divided into two parts, namely V1 and V2 and the traverse
algorithm used in this case is DFS. General steps for this
algorithm can be described as follows.

1. The algorithm checks all vertices v in the first part of the
graph (V1): v = 1. . . n1. If a vertex v is already saturated
by the current matching, it skips this vertex. Otherwise,
it attempts to saturate this vertex by starting a DFS
search for an augmenting path from it.

2. The algorithm examines all edges from vertex v.

3. If an edge (v, u) leads to a vertex u that is not yet
saturated by the matching, then an augmenting path has
been found. This edge is then included in the matching
and the search for the augmenting path from v stops.

4. If an edge (v, u) leads to a vertex u that has been
saturated by an edge (u, p), the algorithm continues
along this edge. The traversal moves to vertex p and
continues searching for an augmenting path from there
(repeat from step (2)).

5. The traversal starting from vertex v either finds
augmenting path, thereby saturating v, or fails to find
such a path, leaving v unsaturated.

III. ANALYSIS AND IMPLEMENTATION

In this section, we will discuss two possible solutions to get
the optimal project assignment, namely brute force algorithm
and Kuhn’s algorithm. First, let us define some constraints that
will be used to analyze and implement the solutions.

Let n be the number of people in a certain organization and
m be the number of projects that need to be done. A person’s
skills may meet some projects’ requirements. However, each
person can only be assigned to one project or none.
Consequently, each project can only receive zero or one person.

Our objective is to find an assignment that maximizes the
number of people legally assigned to some projects.

It is easy to see that this problem can be transformed into
maximum bipartite matching problem. For convenience, let’s
assume that the input graph is already split into two parts,
namely V1 (set of all people) and V2 (set of all projects). Each
vertex v in V1 is connected to vertex u in V2 if the person denoted
by v meets the requirement of the project in u. Thus, we can use
both the brute force algorithm and Kuhn’s algorithm to tackle
this problem.

A. Brute Force Algorithm

One of the most straightforward and simple solutions to this
problem is to enumerate all the legal matchings and select the
one with the highest cardinality. The enumeration can be done
by iterating over V1 and for each vertex, try to connect to each
of its neighbors in V2, while keeping track the previously
selected vertices. As stated before, this algorithm is complete
(we will always find the solution), yet extremely slow and we
will see why.

In general, the steps for the brute force algorithm to solve the
project assignment problem recursively can be described as
follows.

1. Initialize two empty lists of pair of integers
maxMatching and currentMatching. The array
maxMatching will store the maximum matching found,
while currentMatching will store the current matching
being checked.

2. Initialize another array of Boolean visited with the size
of n2 and value of FALSE. If vertex i in V2 is already
assigned to a vertex in V1 then visited[i] = TRUE,
otherwise visited[i] = FALSE.

3. Generate the matching recursively started from v = 1
until v = n1 for all possibility.

4. Let v be the current vertex being processed. If v > n1
which indicates that all vertices in V1 have been
processed, then check if the size of currentMatching is
greater than the size of maxMatching. If that is true, set
maxMatching to currentMatching.

5. If v ≤ n1, then for each adjacent vertex w of V1, if
visited[w] = FALSE, then set visited[w] = TRUE, add
the pair {v, w} to currentMacthing set, and proceed to
the next vertex in V1. In this case, we can also choose
not to connect any neighbor to v and proceed to the next
vertex.

Below is the pseudocode implementation of the algorithm.

Algorithm 1. Brute Force Algorithm

Procedure generateMatching(v: int, maxMatching: list[pair
of int], currentMatching: list[pair of int], visited: list[bool])

if v > 𝑛1 then
 if size(maxMatching) < size(currentMatching) then
 maxMatching ← currentMatching
else
 for neighbor w of v do

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 if visited[w] = FALSE then
 visited[w] ← TRUE
 currentMatching.add({v, w})
 generateMatching(v + 1, maxMatching,
currentMatching, visited)
 currentMatching.pop()
 visited[w] ← FALSE
 generateMatching(v + 1, maxMatching, currentMatching,
visited)

This algorithm traverses through all vertices in V1. Note that
for each vertex v in V1, generating possible matching involves
iterating through all adjacent vertices to v. Suppose that the
number of neighbors of each vertex in V1 is ≤ b. Thus, the time
complexity of the brute force algorithm is

O(bn1)

This makes the brute force approach impractical for large
graphs due to its exponential growth in complexity. Even if b is
relatively small, if n is large, the computational cost will still be
expensive.

B. Kuhn’s Algorithm

Kuhn’s algorithm is one of the most efficient algorithms to
solve maximum bipartite matching problems. This algorithm
operates by repeatedly searching for an augmenting path.
Whenever it finds one, it updates the matching by alternating
along the path. This process is repeated until no more
augmenting paths can be found, at which point the current
matching is considered maximum.

The general steps for this algorithm have been provided in
the previous section. Therefore, I will only provide the
pseudocode implementation of Kuhn’s algorithm in this section.
Below is the pseudocode implementation of Kuhn’s algorithm.

Algorithm 2. Kuhn’s Algorithm

Function try_kuhn(v: int, adj: list[list[int]], mt: list[int],
used: list[bool]) → bool

if used[v] then
 → FALSE
used[v] ←TRUE
for neighbor w of v do
 if mt[w] = -1 or try_kuhn(mt[w]) then
 mt[w] ← v
 → TRUE
→ FALSE

Procedure kuhn_algorithm(n: int, k:int, adj: list[list[int]])

mt ← [-1 for 1…k] // initialize mt
for v traverse [1…n] do
 used ← [FALSE for 1…n] // reassign used
 try_kuhn(v)

The pseudocode above is based on DFS, which accepts a
bipartite graph explicitly divided into two parts. In this context,
n represents the number of vertices in V1, while k represents the

number of vertices in V2. The list adj[v] contains the list of edges
originating from vertex v in V1, listing the vertices to which these
edges lead. The vertices in both parts are independently
numbered; vertices in V1 are numbered from 1 to n, and those in
V2 are numbered from 1 to k.

Two additonal lists are used, namely mt and used. The list mt
stores information about the current matching, specifically for
the vertices in V2: mt[i] represents the vertex number in V1 that
connected by an edge to vertex i in V2. The list used keeps track
of visited vertices during the DFS traversal to make sure that no
vertex is visited more than once.

The procedure kuhn_algorithm initializes current matching
as empty and processes each vertex v in V1 using try_kuhn after
resetting the list used. Inside the function try_kuhn, all edges
from vertex v in V1 are examined. It checks if an edge leads to
an unsaturated vertex w or if w is saturated but an augmenting
path can be found by recursively starting from mt[w]. If an
augmenting path is found, the function alternates the edge
adjacent to w to vertex v before returning TRUE.

The time complexity of Kuhn’s algorithm depends on which
part of the graph is chosen as V1 and which as V2. In the
described implementation, the traversal only begins from the
vertices in V1, making algorithm run in O(n1m) where n1 is the
number of vertices in V1 and m is the number of edges. In the
worst-case scenario, this becomes O(n1

2n2) when each vertex in
V1 connected to every vertex in V1 (m = n1n2).

IV. CASE STUDY

In this section, we will try to compare the time required by
the brute force algorithm and Kuhn’s algorithm to solve the
project assignment problem.

A. Test Case 1

In this case, the number of vertices in V1 is greater than the
number of vertices in V2. We will use n = 10 and k = 4 to test
this problem. The dataset for this test case is given as follows.

1 1, 2

2 2, 3

3 3, 4

4 1, 2, 3, 4

5 1, 2, 3, 4

6 1, 4

7 2, 4

8 1

9 2

10 3

Table 1. Dataset for test case 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 5. Test Case 1 using Kuhn’s algorithm

Figure 6. Test Case 1 using the brute force algorithm

The results presented above reveal a significant time
difference between the brute force algorithm and Kuhn’s
algorithm. This disparity arises from the exponential growth of
the brute force algorithm, in contrast to the polynomial time
complexity of Kuhn’s algorithm.

B. Test Case 2

In this case, the number of vertices in V1 is lesser than the
number of vertices in V2. We will use n = 5 and k = 8 to test this
problem. The dataset for this test case is given as follows.

1 1, 2, 3, 4

2 2, 3, 4, 5

3 3, 4, 5, 6

4 4, 5, 6, 7

5 5, 6, 7, 8

Table 2. Dataset for test case 2

Figure 7. Test Case 2 using Kuhn’s algorithm

Figure 8. Test Case 2 using brute force algorithm

It is important to note the significant time difference between
the brute force algorithm and Kuhn’s algorithm in this test. The
results of this test are consistent with our previous findings,
demonstrating that Kuhn’s algorithm is substantially more
efficient than the brute force algorithm. These experimental
results corroborate the theoretical complexity analysis presented
in the previous section, which highlights the difference in time
complexity between the two algorithms.

V. CONCLUSION

In this paper, we explored the application of Kuhn’s
algorithm in solving the project assignment problem. Through
both theoretical and experimental validation, we demonstrated
the efficiency of Kuhn’s algorithm compared to the brute force
approach.

Our theoretical analysis established that Kuhn’s algorithm
operates in polynomial time, specifically O(n1

2n2) in worst case
which is significantly more efficient than the exponential growth
of the brute force algorithm, i.e. O(bn1). Experimentally, we
tested both algorithms on two datasets that confirm our
theoretical findings. Kuhn’s algorithm consistently
outperformed the brute force algorithm in terms of execution
time.

In conclusion, Kuhn's algorithm provides a robust solution
for optimal project assignment in bipartite graphs. Its
polynomial time complexity makes it a superior choice over the
brute force algorithm, ensuring efficient performance even with
large datasets.

AKNOWLEDGEMENT

I express my gratitude to the Almighty God for His grace, as
I have been able to successfully complete the paper "Optimal
Project Assignment Using Kuhn’s Algorithm for Maximum
Bipartite Matching". I would also like to express my gratitude to
the lecturers of the Algorithm Strategy course who has guided
me throughout the learning process in this course. Finally, I
would like to thank all the sources referenced in this paper.

REFERENCES

[1] “Depth First Search (DFS) – Algorithms for Competitive Programming.”
Accessed: June 12 2024. [Online]. Available: https://cp-
algorithms.com/graph/depth-first-search.html

[2] Kingsfor, Card “CMSC 451: Maximum Bipartite Matching.” Accessed:
June 12 2024. [Online]. Available:
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/matching.pdf

https://cp-algorithms.com/graph/depth-first-search.html
https://cp-algorithms.com/graph/depth-first-search.html
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/matching.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

[3] “Kuhn’s Algorithm for Maximum Bipartite Matching – Algorithms for
Competitive Programming.” Accessed: June 12 2024. [Online].
Available: https://cp-
algorithms.com/graph/kuhn_maximum_bipartite_matching.html

[4] Maulidevi, N. U., Munir, R. ”Breadth/Depth First Search (Bagian 1)”.
2021. Accessed: June 12 2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/BFS-
DFS-2021-Bag1-2024.pdf

[5] Munir, R. “Graf (Bagian 1).” Accessed: June 12 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-
2024/19-Graf-Bagian1-2023.pdf

[6] “Maximum Bipartite Matching – Geeks for Geeks”. Accessed: June 12
2024. [Online]. Available: https://www.geeksforgeeks.org/maximum-
bipartite-matching

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

 Adril Putra Merin 13522068

https://cp-algorithms.com/graph/kuhn_maximum_bipartite_matching.html
https://cp-algorithms.com/graph/kuhn_maximum_bipartite_matching.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/BFS-DFS-2021-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/BFS-DFS-2021-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://www.geeksforgeeks.org/maximum-bipartite-matching
https://www.geeksforgeeks.org/maximum-bipartite-matching

