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Abstract— This paper explores the application of Kuhn’s 

algorithm to solve the project assignment problem. The project 

assignment problem aims to optimally allocate a set of people in a 

group to a set of projects based on their skills and project 

requirements. By modeling the problem as a bipartite graph, 

where one set represents people and the other set represents 

projects, we can leverage Kuhn’s algorithm to find the maximum 

matching that maximizes the overall efficiency of assignments. 

This approach ensures that each person is assigned to zero or one 

project, and each project receives zero or one person. The 

efficiency of the algorithm is demonstrated through various 

experiments, showcasing its potential to significantly enhance 

project management processes. This also indicates that Kuhn’s 

algorithm provides a robust and efficient solution, outperforming 

brute force assignment methods.  
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I.  INTRODUCTION 

Effective task assignment is one the main challenges in 
project management and resource allocation within an 
organization. Ensuring that each person is assigned to a project 
that matches their skills and capabilities is crucial for achieving 
maximum efficiency and optimal outcomes. However, this 
process is often complex and requires robust algorithms to 
optimize the assignments.  

In the context of the task assignment problem, we can model 
it as a bipartite graph, where one set represents people, and the 
other set represents tasks. Each person and project can be 
represented as a vertex and be connected if a person’s skill meets 
the project requirement. The objective of maximum bipartite 
matching is to find a matching that maximizes the number of 
assignments, ensuring that each person is assigned to zero or one 
project, and each project receives zero or one person.  

One of the most straightforward methods to solve maximum 
bipartite matching is by using the brute force algorithm. 
However, the following sections of this paper will show that this 
method is not the best way to solve this problem because, as the 
name suggests, the brute force algorithm does not consider the 
heuristics and details of the problem; instead, it tries all possible 
answers to get the optimal solution. 

Another way to get the optimal project assignment is by 
using Kuhn’s algorithm which offers an efficient solution for the 
maximum bipartite matching. The subsequent of this paper will 
discuss the theoretical background of Kuhn’s algorithm and 
show various experiments to demonstrate the efficiency of this 
approach.  

II. BASIC THEORY 

A. Brute Force 

The brute force algorithm is one of the simplest and most 
straightforward techniques in computer science for solving 
problems. As the name suggests, it involves systematically 
enumerating all possible candidates for the solution and 
checking whether each candidate satisfies the problem’s 
requirement without considering the heuristics or details of the 
problem.  

While brute force algorithm is complete – will always find 
the solution if exists – and easy to implement, the computational 
costs are proportional to the number of candidate solutions 
which tends to grow very quickly as the size of the problem 
increases. Thus, this algorithm is not particularly efficient 
because it is possible to eliminate many candidate solutions 
through clever algorithms.  

Brute force algorithm is usually used in a problem where the 
size is limited or in a condition where the simplicity of the 
implementation is more important than the computational speed. 
This algorithm can also be used as baseline method when 
benchmarking other algorithms. The general steps of this 
algorithm can be defined as follows. 

1. Generate All Possible Candidates: List all possible 
solutions to the problem. This may involve generating 
permutations, combinations, or other relevant 
structures.  

2. Evaluate Each Candidate: Check each candidate to see 
if it meets the problem’s requirements. This often 
involves a straightforward comparison or evaluation 
function. 

3. Select the Best Solution: Out of all candidates that meet 
the requirements, select the one that optimizes the 
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objective, for example minimum cost, maximum profit, 
etc.  

 Because of its generality, the brute force algorithm can be 
applied to a wide range of problems without many 
modifications. For example, Travelling Salesman Problem, 
Password Cracking, String Matching, Subset Sum, Bubble Sort, 
Selection Sort, etc. 

 

Figure 1. An example of brute force used in bubble sort 

B. Graph 

Graphs are fundamental data structures used in both 
mathematics and computer science to represent relationships 
between objects. They consist of vertices, which represent the 
objects being modeled, and edges, which represent the 
relationship between objects.  

Based on edge orientation, a graph can be directed or 
undirected. In a directed graph, edges have a direction, 
indicating a one-way relationship between vertices. In an 
undirected graph, edges have no direction, signifying a mutual 
relationship between vertices.  

Moreover, a graph can be weighted or unweighted. In a 
weighted graph, each edge has a numerical weight or cost 
associated with it, representing cost of the relationship between 
vertices. Unweighted graphs have no such weights. 

Visually, a graph is usually represented as a collection of 
dots or circles to denote the vertices, connected by lines or 
curves to denote the edges. In their implementations, Graphs can 
be represented in various ways, such as adjacency list and 
adjacency matrix. 

 

Figure 2. Visual representation of a graph 

An adjacency matrix is a 2D array where each cell represents 
the presence or absence of an edge between two vertices in 

graph. If there is an edge from vertex i to vertex j, the cell (i, j) 
contains a non-zero or non-infinity value (usually 1 for an 
unweighted graph). If there is no edge, the cell contains a zero 
or infinity (in weighted graphs). For weighted graphs, the cell 
may contain the weight of the corresponding edges.  

An adjacency list is a collection of lists or arrays, where each 
vertex in the graph has a list of its adjacent vertices. This 
representation is typically more memory-efficient for sparse 
graphs since it only stores information about existing edges.  

Graphs have plenty of applications such as computer 
networking, social networks, transportation systems, 
recommendations system, etc.  

C. Depth First Search 

Depth First Search is an algorithm for traversing or searching 
a tree or graph data structure. DFS traverses a graph by starting 
at a chosen vertex (the start vertex) and exploring as far as 
possible along each branch before backtracking. It prioritizes 
exploring the deepest unexplored vertices first. When a dead-
end is reached (namely there are no more unvisited vertices 
adjacent to the current vertex), DFS backtracks to the most 
recently visited vertex that still has unvisited neighbors and 
continues exploring from there. The general steps for this 
algorithm can be described as follows. 

1. Begin the traversal by selecting a root vertex in the 
graph. 

2. Visit the root vertex and mark it as visited to avoid 
revisiting it during traversal. 

3. Visit each neighbor of the current vertex that has not 
been visited yet. If a vertex has multiple unvisited 
neighbors, choose one and proceed deeper into that 
neighbor before visiting other neighbors. 

4. If all neighbors of the current vertex have been visited, 
backtrack to the most recently visited vertex with 
unvisited neighbors and continue the exploration from 
there.  

5. Repeat steps 3 and 4 until all vertices in the graph have 
been visited.  

 

Figure 3. Example of DFS 
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The time complexity of DFS if O(V + E), where V is the 
number of vertices and E is the number of edges in the graph. 
This is because DFS visits each vertex and edge at most once.  

D. Bipartite Graph 

A bipartite graph is a type of graph whose vertices can be 
divided into two disjoint sets such that no two vertices within the 
same set are adjacent to each other. Formally, a graph G = (V, E) 
is bipartite if its vertex set V can be partitioned into two sets V1 
and V2 such that every edge in E connects a vertex in V1 to a V2. 

 

Figure 3. Visual example of a bipartite graph 

To put it simply, a bipartite graph is a graph that can be 
colored using only two colors in such a way that no two adjacent 
vertices have the same color. This property makes bipartite 
graphs particularly interesting and useful in various applications.  

E. Maximum Bipartite Matching 

Maximum bipartite matching is a fundamental problem in 
graph theory and combinatorial optimization that involves 
finding the largest possible set of non-intersecting edges in a 
bipartite graph.  

Given a bipartite graph G = (V, E), with vertex sets V1 and 
V2, a matching M is a subset of edges from E such that no two 
edges in M share a common endpoint. A maximum bipartite 
matching is a matching with the maximum possible number of 
edges.  

 

Figure 4. An example of maximum bipartite (source: 
https://www.geeksforgeeks.org/maximum-bipartite-matching/) 

Before proceeding to the next section, these are some 
important definitions of some terms that will used frequently in 
following sections. 

- Cardinality of a matching: number of edges in a 
matching 

- Saturated vertex: a vertex that have an adjacent edge 
from the matching M, namely which have degree 
exactly one in the subgraph formed by M. 

- Maximal matching: a matching M of graph G that is 
not a subset of any other matching 

- Path: a simple path that does not contain any repeated 
vertices or edges.  

- Alternating path: a path in which the edges alternately 
belong or do not belong to a matching M. 

- Augmenting path: alternating path whose initial and 
final vertices are unsaturated, namely they do not belong 
in the matching M. 

- Symmetric difference of sets A and B: set of all 
elements that belong to either A or B, but not both. 
Mathematically, this expression can be written as 
follows. 

A ⊕ B = (A − B) ∪ (B − A) 

F. Berge’s Lemma 

Berge’s Lemma originally observed by the Danish 
mathematician Julius Petersen in 1891 and later by Hungarian 
mathematician Denés Kőnig in 1931. This lemma was formally 
proven by the French mathematician Claude Berge in 1957.  

This lemma states that a matching M is maximum if and only 
if there is no augmenting path relative to the matching M. We 
will prove both directions of this bi-implication by using 
contradiction. 

1. A matching M is maximum ⇒ There is no augmenting 
path relative to M. 

Assume there is an augmenting path P relative to the 
given maximum matching M. This augmenting path P 
must be of odd length, containing one more edge not in 
M than the number of edges it has that are also in M. We 
can construct a new matching M’ by including all edges 
in the original matching M except those also in P, and 
including the edges in P that are not in M. This new 
matching M' is valid because the starting and ending 
vertices of P are unsaturated by M and the remaining 
vertices are only saturated by the matching P ∩ M. As a 
result, the new matching M’ will have one more edge 
than M. Thus, contradicting the assumption that M was 
maximum. Formally, given an augmenting path P with 
respect to some maximum matching M, the matching 
M' = P ⊕ M has |M'| = |M| + 1, which is a 
contradiction.  

2. There is no augmenting path relative to M ⇒ A 
matching M is maximum 

Let there be a matching M' of greater cardinality than 
M. Consider the symmetric difference Q = M ⊕ M’. 
The subgraph Q is no longer necessarily a matching. 
Each vertex in Q has a maximum degree of 2, meaning 
all connected components in Q are one of three types: 

- An isolated vertex 
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- A simple path with edges alternating between M and 
M' 

- a cycle of even length whose edges are alternately from 
M to M’.  

Since M’ has more edges than M, Q contains more edges 
from M’ than M. By the pigeonhole principle, at least one 
connected component must be a path with more edges from M’ 
than M. Any such alternating path will have initial and final 
vertices unsaturated by M, forming an augmenting path for M, 
which contradicts the initial assumption.  

G. Kuhn’s Algorithm 

Kuhn’s algorithm is one of the most efficient algorithms to 
solve maximum bipartite matching problem. This algorithm is a 
direct application of Berge’s lemma. First, we start with an 
empty matching. The algorithm then repeatedly searches for an 
augmenting path. Whenever it finds one, it updates the matching 
by alternating along the path. This process is repeated until no 
more augmenting paths can be found, at which point the current 
matching is considered maximum. 

For convenience, let’s assume that the input graph is already 
divided into two parts, namely V1 and V2 and the traverse 
algorithm used in this case is DFS. General steps for this 
algorithm can be described as follows. 

1. The algorithm checks all vertices v in the first part of the 
graph (V1): v = 1. . . n1. If a vertex v is already saturated 
by the current matching, it skips this vertex. Otherwise, 
it attempts to saturate this vertex by starting a DFS 
search for an augmenting path from it. 

2. The algorithm examines all edges from vertex v.  

3. If an edge (v, u) leads to a vertex u that is not yet 
saturated by the matching, then an augmenting path has 
been found. This edge is then included in the matching 
and the search for the augmenting path from v stops. 

4. If an edge (v, u) leads to a vertex u that has been 
saturated by an edge (u, p), the algorithm continues 
along this edge. The traversal moves to vertex p and 
continues searching for an augmenting path from there 
(repeat from step (2)).  

5. The traversal starting from vertex v either finds 
augmenting path, thereby saturating v, or fails to find 
such a path, leaving v unsaturated.  

III. ANALYSIS AND IMPLEMENTATION 

In this section, we will discuss two possible solutions to get 
the optimal project assignment, namely brute force algorithm 
and Kuhn’s algorithm. First, let us define some constraints that 
will be used to analyze and implement the solutions.   

Let n be the number of people in a certain organization and 
m be the number of projects that need to be done. A person’s 
skills may meet some projects’ requirements. However, each 
person can only be assigned to one project or none. 
Consequently, each project can only receive zero or one person. 

Our objective is to find an assignment that maximizes the 
number of people legally assigned to some projects.  

It is easy to see that this problem can be transformed into 
maximum bipartite matching problem. For convenience, let’s 
assume that the input graph is already split into two parts, 
namely V1 (set of all people) and V2 (set of all projects). Each 
vertex v in V1 is connected to vertex u in V2 if the person denoted 
by v meets the requirement of the project in u. Thus, we can use 
both the brute force algorithm and Kuhn’s algorithm to tackle 
this problem.   

A.  Brute Force Algorithm 

One of the most straightforward and simple solutions to this 
problem is to enumerate all the legal matchings and select the 
one with the highest cardinality. The enumeration can be done 
by iterating over V1 and for each vertex, try to connect to each 
of its neighbors in V2, while keeping track the previously 
selected vertices. As stated before, this algorithm is complete 
(we will always find the solution), yet extremely slow and we 
will see why.  

In general, the steps for the brute force algorithm to solve the 
project assignment problem recursively can be described as 
follows. 

1. Initialize two empty lists of pair of integers 
maxMatching and currentMatching. The array 
maxMatching will store the maximum matching found, 
while currentMatching will store the current matching 
being checked. 

2. Initialize another array of Boolean visited with the size 
of n2 and value of FALSE. If vertex i in V2 is already 
assigned to a vertex in V1 then visited[i] = TRUE, 
otherwise visited[i] = FALSE. 

3. Generate the matching recursively started from v = 1 
until v = n1 for all possibility. 

4. Let v be the current vertex being processed. If v > n1 
which indicates that all vertices in V1 have been 
processed, then check if the size of currentMatching is 
greater than the size of maxMatching. If that is true, set 
maxMatching to currentMatching.  

5. If v ≤ n1, then for each adjacent vertex w of V1, if 
visited[w] = FALSE, then set visited[w] = TRUE, add 
the pair {v, w} to currentMacthing set, and proceed to 
the next vertex in V1. In this case, we can also choose 
not to connect any neighbor to v and proceed to the next 
vertex.  

Below is the pseudocode implementation of the algorithm.  

Algorithm 1. Brute Force Algorithm 

Procedure generateMatching(v: int, maxMatching: list[pair 
of int], currentMatching: list[pair of int], visited: list[bool]) 

if  v > 𝑛1 then 
    if size(maxMatching) < size(currentMatching) then 
        maxMatching ← currentMatching 
else 
    for neighbor w of v do 
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        if visited[w] = FALSE then 
            visited[w] ← TRUE 
            currentMatching.add({v, w}) 
            generateMatching(v + 1, maxMatching, 
currentMatching, visited) 
            currentMatching.pop() 
            visited[w] ← FALSE 
    generateMatching(v + 1, maxMatching, currentMatching, 
visited) 

 

This algorithm traverses through all vertices in V1. Note that 
for each vertex v in V1, generating possible matching involves 
iterating through all adjacent vertices to v. Suppose that the 
number of neighbors of each vertex in V1 is ≤ b. Thus, the time 
complexity of the brute force algorithm is  

O(bn1) 

This makes the brute force approach impractical for large 
graphs due to its exponential growth in complexity. Even if  b is 
relatively small, if n is large, the computational cost will still be 
expensive. 

B. Kuhn’s Algorithm 

Kuhn’s algorithm is one of the most efficient algorithms to 
solve maximum bipartite matching problems. This algorithm 
operates by repeatedly searching for an augmenting path. 
Whenever it finds one, it updates the matching by alternating 
along the path. This process is repeated until no more 
augmenting paths can be found, at which point the current 
matching is considered maximum. 

The general steps for this algorithm have been provided in 
the previous section. Therefore, I will only provide the 
pseudocode implementation of Kuhn’s algorithm in this section. 
Below is the pseudocode implementation of Kuhn’s algorithm.  

Algorithm 2. Kuhn’s Algorithm 

Function try_kuhn(v: int, adj: list[list[int]], mt: list[int], 
used: list[bool]) → bool 

if used[v] then 
    → FALSE 
used[v] ←TRUE 
for neighbor w of v do 
    if mt[w] = -1 or try_kuhn(mt[w]) then 
        mt[w] ← v 
        → TRUE 
→ FALSE 
 
Procedure kuhn_algorithm(n: int, k:int, adj: list[list[int]]) 

mt ← [-1 for 1…k] // initialize mt 
for v traverse [1…n] do 
    used ← [FALSE for 1…n] // reassign used 
    try_kuhn(v) 

 

The pseudocode above is based on DFS, which accepts a 
bipartite graph explicitly divided into two parts. In this context,  
n represents the number of vertices in V1, while k represents the 

number of vertices in V2. The list adj[v] contains the list of edges 
originating from vertex v in V1, listing the vertices to which these 
edges lead. The vertices in both parts are independently 
numbered; vertices in V1 are numbered from 1 to n, and those in 
V2 are numbered from 1 to k. 

Two additonal lists are used, namely mt and used. The list mt 
stores information about the current matching, specifically for 
the vertices in V2: mt[i] represents the vertex number in V1 that 
connected by an edge to vertex i in V2. The list used keeps track 
of visited vertices during the DFS traversal to make sure that no 
vertex is visited more than once.  

The procedure kuhn_algorithm initializes current matching 
as empty and processes each vertex v in V1 using try_kuhn after 
resetting the list used. Inside the function try_kuhn, all edges 
from vertex v in V1 are examined. It checks if an edge leads to 
an unsaturated vertex w or if w is saturated but an augmenting 
path can be found by recursively starting from mt[w]. If an 
augmenting path is found, the function alternates the edge 
adjacent to w to vertex v before returning TRUE.  

The time complexity of Kuhn’s algorithm depends on which 
part of the graph is chosen as V1 and which as V2. In the 
described implementation, the traversal only begins from the 
vertices in V1, making algorithm run in O(n1m) where n1 is the 
number of vertices in V1 and m is the number of edges. In the 
worst-case scenario, this becomes O(n1

2n2) when each vertex in 
V1 connected to every vertex in V1 (m = n1n2). 

IV. CASE STUDY 

In this section, we will try to compare the time required by 
the brute force algorithm and Kuhn’s algorithm to solve the 
project assignment problem.  

A. Test Case 1 

In this case, the number of vertices in V1 is greater than the 
number of vertices in V2. We will use n = 10 and k = 4 to test 
this problem. The dataset for this test case is given as follows.  

1 1, 2 

2 2, 3 

3 3, 4 

4 1, 2, 3, 4 

5 1, 2, 3, 4 

6 1, 4  

7 2, 4 

8 1  

9 2 

10 3  

Table 1. Dataset for test case 1 
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Figure 5. Test Case 1 using Kuhn’s algorithm 

 

Figure 6. Test Case 1 using the brute force algorithm 

The results presented above reveal a significant time 
difference between the brute force algorithm and Kuhn’s 
algorithm. This disparity arises from the exponential growth of 
the brute force algorithm, in contrast to the polynomial time 
complexity of Kuhn’s algorithm. 

B. Test Case 2 

In this case, the number of vertices in V1 is lesser than the 
number of vertices in V2. We will use n = 5 and k = 8 to test this 
problem. The dataset for this test case is given as follows.  

1 1, 2, 3, 4 

2 2, 3, 4, 5 

3 3, 4, 5, 6 

4 4, 5, 6, 7 

5 5, 6, 7, 8 

Table 2. Dataset for test case 2 

 

Figure 7. Test Case 2 using Kuhn’s algorithm 

 

Figure 8. Test Case 2 using brute force algorithm 

It is important to note the significant time difference between 
the brute force algorithm and Kuhn’s algorithm in this test. The 
results of this test are consistent with our previous findings, 
demonstrating that Kuhn’s algorithm is substantially more 
efficient than the brute force algorithm. These experimental 
results corroborate the theoretical complexity analysis presented 
in the previous section, which highlights the difference in time 
complexity between the two algorithms.  

V. CONCLUSION 

In this paper, we explored the application of Kuhn’s 
algorithm in solving the project assignment problem. Through 
both theoretical and experimental validation, we demonstrated 
the efficiency of Kuhn’s algorithm compared to the brute force 
approach.  

Our theoretical analysis established that Kuhn’s algorithm 
operates in polynomial time, specifically O(n1

2n2) in worst case 
which is significantly more efficient than the exponential growth 
of the brute force algorithm, i.e. O(bn1). Experimentally, we 
tested both algorithms on two datasets that confirm our 
theoretical findings. Kuhn’s algorithm consistently 
outperformed the brute force algorithm in terms of execution 
time.  

In conclusion, Kuhn's algorithm provides a robust solution 
for optimal project assignment in bipartite graphs. Its 
polynomial time complexity makes it a superior choice over the 
brute force algorithm, ensuring efficient performance even with 
large datasets.  
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